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AN EFFICIENT EXACT ALGORITHM FOR THE

"-LEAST-SQUARES" IMAGE REGISTRATION PROBLEM

Karel ZIKAN
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and
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Abstract

Image registration involves estimating how one set of n-dimensional points is rotated, scaled, and

translated into a second set of n-dimensional points. In practice, n is usually 2 or 3. We give an exact

algorithm to solve the 'least-squares" formulation of the two-dimensional registration problem. The

algorithm, which is based on parametric linear programming, can be viewed as a refinement of the

0(k 3 ) approximation method proposed by Zikan and Silberbergfl3]. The approach can be extended

to handle registration of images of different cardinalities. - ,-
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1. Background of the Problem

The basic image registration problem is stated in ZIKAN and SILBERBERG [13]: "Assume that a

collection of n-dimensional points undergoes an afline transformation made up of a rotation, a scale

change, and a translation; moreover, assume that noise (random and/or systematic) is added to

each transformed point. Knowing the positions of the original and transformed points, but not their

identities, can the transformation, the noise, and the point-to-point matching be recovered?"

The image registration problem is fundamental in robotics, as the ability to "register" images is a

necessary prerequisite fnr "on-board" automated visual reasoning of mobile agents. Many research

papers have been written on the subject. Ilenry S. Baird [4] (ACM Distinguished Thesis Series,

1984) outlines some of the older, mostly heuristic approaches. Many of the methods employ the

so-called pri ned tree approach; see e.g., GENNERY [6] and WONG and SALAY [12], where the tree of

partial matchings is searched for the desired solution. All permutations of the image points are

connected into a tree via the partial matches. The full matches (permutations) form the leaves of

the tree. The hope is that, although the tree contains k! leaves, most of the branches can be pruned

(removed from further consideration) early. The elegant approach of Baird also employs the tree-

pruning technique and claims to be computationally superior to the other methods. The inherent

problems associated with the tree-pruning methods are explained in [13].

Image registration is often formulated as a "least-squares" problem. Partial results toward the

solution of the general problem have been discovered and rediscovered several times. Perhaps the

oldest paper on the subject is GREEN [8], 1952. Long before various computer vision problems became

the most pressing open problems of the robotics-computer science of today, B. Green gave a solution

to the optimal rotation svbproblem. Green's result was later improved by SHONEMANN [11]. Both

papers appeared in Psychometrica as the research focused on factor analysis rather then on image

registratioa. Clearly unaware of the classical results, FAUGERAS and HEBERT [5] (in a more general

work) gave solutions to the two- and three-dimensional rotation subproblems by a method different

from that of Green and Shonemann. Still later, ARUN, HUANG, and BLOSTEIN [3] rediscovered the

original method in the image registration setting. The latter two papers also give partial results

on the optimal translation subproblem. All these results implicitly or explicitly assume that the

one-to-one matching of points is either fixed or known. These and other aspects of the general

least-squares problem are treated in ZMKAN and SILBERBERG [13]. An O(k3) approximation solution

method to the general problem is also there given-

For other formulations of the image registration problem, see BAIRD [4], ALT, MEI|LHORN, WAGENER,

and WELZL [1], and ARKIN, MITCtELL, and ZMKAN [2]. A strongly polynomial algorithm which solves

the Baird's formulation can be (essentially) found in [1]. In [2] a strongly polynomial algorithm to a

more general problem is given. Most natural formulations of the image registration problem can be
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at least approximately cast within this framework; the "least-squares" and Baird formulations are

no cxceptiors. If we can extrapolate from the experience of other branches of applied mathematics,

however, then we can see that a good specialized algorithm for the "least-squares" registration

formulation is likely to be computationally superior to other serious image registiation approaches.

We utilize parametric linear programming to provide such an algorithm here.

The following notions (and the associated notation) from complex plane geometry, mathematical pro-

gramming, and metric space theory provide a convenient formal framework for the two-dimensional

image registration problem.

If X is a two-dimensional vector, then let x = zI + iz2 = [1xI4,9,. be the corresponding

complex number, where Ilxll = Ilzlx2 is the magnitude (two-norm), 0, is the argument, and [llx4,8.]
is the polar representation. Let X denote the complex conjugate of x and recall that in polar

coordinates xy = [lixJJ ilyllO. + 0,J and xy = [lixil . llyll9, - e1)]. The scalar product of x and y

is x 0 Y = Z011 + Z2Y- IIxIlyll cos(e, - 03), the "cross" product is x x y = lxlzlllyl sin(Gz - Oy).

Recall that xy = x o y + ix x y and that x-y = x o y. The scalar product is also called the "inner"

or the "dot" product. To prevent possible ambiguity in mathematical formulas, let the notation

(..-) denote the inner product. Therefore (x, y) = x c y for complex numbers, (z, y) = zry for real

k-dimensional vectors, and if A and B are real n x k matrices, then let (A, B) = trace(AB?).

Assume that A and B are k-dimensional vectors of complex numbers and define

k

where aj and bj are the i-th components of the vectors A and B, respectively. This is the complex

inner product.

Consider the complex number e" = cos(O) + i sin(s) Counterclockwise rotation of two-dimensional

vectors by the angle 0 can be represented by multiplication of the corresponding complex numbers

by ei*. If r = [3,,0,], then the multiplicatioit by r corresponds to the counterclockwise rotation by

0, and scaling by Sr > 0. Let a, denote the argument of the complex number ai and 'C, be the

argument of bi. Define

d,,(r) = IIa - rbjll2 = Ilaill + llrJlJllb'jl 2 - 2(ai,rbj) (1 -2)

I- ilai12 + s211hJ 111 - 2r1lla1llllbj!l cos(0, - Or - )

for all kV distinct {(,j} pairs.
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Consider the parametric linear programs

k k

rin ndn . d, (r) x,
tECI X Y

6=L j=-1

k

subject to E z, = 1, for all j = 1,2,.,k (1 -3)

k

E xi = 1, for all i = 1,2,..,k
j=1

Xi Ž0, for all i,j= 1,2,...,

and
k k

in=n mi i r

subject to ZXi) = 1, for all j 1,2,_ k (1-4)

xj = 1, for all i= 1,2, . k

zX. > 0, for all i,j = 1,2. k.

These problems arise naturally in the context of "least-squares" image registration, ZIMAN and

SILnERBERG [13]. If (r*,z') is an optimai solution of (1-3), then point-to-point matching can be

recovcred from x°, and rotation and scaling from r'

It is natural to view an n-dimensional image consisting of k points as a k x n matriix with rows

corresponding to the appropriate image points. If the image is two-dimensional, then it is also

convenient to associate with the image a k-dimensional complex vector A where each coordinate a,

corresponds to one image point. In this paper we choose the latter formalism. The association of

a vector (mrVrix) to an image is not unique; it depends on the ordering of the points. In general,

consider the complex k-dimensional vector space Ck. Assume that r and t are complex numbers. The

image associated with the vector A E C' can be translated by A + t = {al + ta , + t,..,Ak + t)

and rotated and scaled by rA_ Afline transformation of image A can then be written as:

(r, t)(A) = r(A$ t). (1 -5)

A relabeling of image points by permutation 7r acts on the image by 7r(A) = PA, where P. is the

permutation matrix corresponding to r. Two images are to be considered as being equivalent if and

only if they differ by a registration and relabeling only,

A -- B-- A = (r,7r,t)DrP.(f)t). (1 -6)
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Recall that iAIli = (A,A)4 is the euclidean (Ftobenius) norm of the vector A.t Assume that

vector A corresponds to an image which has been translated rotated and scaled. Assume also that

noise has been added to each point. Denote the original image by B. If we predict the unknown

transformation from the optimal solution of the problem

rain 11A - (ror, t)BIJ, (1 -7)
(r,t ,)

then we have the "least-squares" estimate, in spirit analogous to least-squares estimates in other

branches of science. The matching and transformation give the least sum of the squared distances

between the matched points. In (13] we show that (1-7) essentially reduces to (1-3) or (1-4)- Thus

these parametric programs are important from the practical standpoint.

2. On Frobenius Norm Image Registration

Many practical aspects of using the Frobenius norm based criteria for n-dimensional image regis-

tration were addressed in ZIKAN and SILBERBERG (12]. Most importantly, the issue of missing and

spurious points was discussed.t In this paper we restrict our discussion to the case where no missing

or spurious points occur. The extension of our results to the unequal cardinality case would be done

analogously to the development in 113).

On the theoretical side, it is shown in [131 that the optimal translation, independent of rotation,

permutation or scaling, always translates the center of mass (centroid) of B to the center of mawi .f

A. Let A and B be n x k real or complex matrices, and a and j3 be the respective centers of mass

(centroids) of their row vectors. (For us, n = 1 and the coordinates are viewed as image points.)

Theorem 1. IF A and B are n x k matrices over the real or complex field V, then a -jo solves the

translation prob;em

mrin 1A - (B S t)I1r- (2- 1)
•IE V"

Proof: A simple proof from first principles can be fotind in [13, Section 3.1]. o

The centroids of the images can be superimposed and conveniently identified with the origin of the

cartesian coordinate system.

It is also argued in [13] that the scaling parameter can be, and perhrps should be, estimated before

one begins the computation of the optimal rotation and matching. This result is enhanced later in

t In the case of n-dimensional images, where the k x n real matrices take the place of vector A,
we use the Frobenius matrix norm hIM11,. = (trace(MM'r))l = (M,M)I. The Frobenius metric is
the same as the euclidean norm when M is viewed as a kn-dimensional vector. If M is a complex
matrix, then IIM11- =- trace(MM'), where M" = Tr
The presence of (missing and) spurious points leads to the problem of registering images of different

cardinalities.
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this paper, when it is shown that positive scalinr has no effect on optimal rotation and matching.

If the matching is fixed, then the optimal rotation and scaling of a two-dimensional registration

problem can be recovered with the help of the following theorem.

Tlhcorem 2. Let A and B be k-dimensional complex vectors, such that (A, D) • 0. If

e= (A,B) (2-2)JI(A, D)ll( -•

and
l_ II(A, 13)11 (2-3)

then eCi solves the problem rnin,,i IIA - el'1311, and

r i=sei (A. 13)
r=s 1113112 (2-4)

solves mmi, IA - rDhl.

Proof: For a proof of the theorem consult [13, Section 4.1 and Appendix 1]. o

Analogous results for rotation and scaling in higher dimensions can be obtained, [13, Section 4]_ The

three-dimensional problem can be solved with the help of the "algebra" ofquaternions, FAUGERAS Land

HEBERT j5], and the general n-dimensional problem with the help of the singular value decomposi-

tion, GREEN' [8], and SHONEMANN [11]. The optimal rotation problem is known in literature as the

orthogonal Procrustes problem, GootUB &nd VAN LOAN [7], after the villainous son of Poseidon.*

The case that is not explicitly covered by the Lheorem, i.e. (A, 13) = 0, may be treated by one of

the standard lexicographical methods, ZIKAN and SILBERBERG [13].

In [131 one finds an approximation scheme, based on parametric linear programming, which solves

(1-4) (and consequently (f-3)) within a specified er,or in 0(k0) worst-case computational complexity.

The availability of "hot stait" at each step of the parametric "sweep" ioakes the approach practically

attractive. In this paper we enhance the parametric algorithm. The new algorithm enables us to

solve (1-3) and (1-4) exactly and (in fact) faster than by the original approximation method. In the

process of developing the algorithm we also enrich the theory of the least-squares formulation of the

image registration problem.

In Greek mythology, Prociustes forced travelers to fit into his bed by stretching their bodies or
cutting off their legs.



3. Bilinear Functionals and the Parametric Linear Programming Problems

Define

Recall the classical result due to lBirkhaff (1946) that the vertices of X correspond to permutations

of k elements. The vector z is a vertex of X if and only if there exists a permutation ir such that

' = 1 whenever i = x(j), and zj, = 0 otherwise. The bases of X correspond to the spanning trees

of the (complete) bipartite graph Bk&&.

Recall the definition (1-2) of d,,(r). Aisumne a lexicographic ordering of the {m,j} pairs and let

d(r) = (dj2(r)) denote the resulting real k2-dimensional vector. Note, that (1.3) and (1.4) can now

be written as
min min(d(r),z), (3 -2)

r aX

and

min min(d(r),z). (3 -
ll~rl= Ic .X

Define the natural functionals,

F(r,z) = (d(r),z) (3-4)

and
F(r) =min F(r,z), (3 -5)

EEX

associated with (3-2) and (3-3). In addition to X, it is convenient to introduce analogues of d(r),

F(r, z), and F(r). Thus, let us define the auxiliary functions

ýj~)=-(ai,rbj), (3-6)

G(r,z) = (6(r).:), (3- 7)

and

G(r) = nu n G(r, z). (3 -8)
sex

Note that. G( .)is a bilinear functional. Also note that

d,,(r) 11Ia11i2 + I1rII2I1bjfl' + 26,,(r), (3-9)

and

F(r, x) 11Ai112 + I1rJl 2I11B111 + 2G(r, z). (3- 10)

Lemma 1. Functions F(r) and G(r) are related by

F(r) =1Ail12 + hirj i2 il1131I 2 + 2G(r). (3- 11)
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Proof: lEq~iatioi (3-11) results from thew identities:

F(r) = rain F(r, z) = min (d(r),z)
4r(X SEX

= M, n {illl' + Ilrll'llhjII' + 2V.,(r)) zg
SrEX

& k & & &

-: -- jII•1,, .+ mi.3-"ZIF rII2IIbJl + 2min 6,,(r)z., (3 - 12)
S=I j=S EX I =- i==E

k 1: k k

= rmi IE 111 1j X,, + mm 2 in-rII 2 IlbjiI2 F ij 4- 2 min (6(r).z)
0=1 j=1 _=1 s=X

= IIA112 + 11r1ll110h12 + 2G(r),

"Al'hre the first three identities follow from (3-5), (3-4), and (3-9) respectively, and the last relation

holds since 1:,,, x, = EJ=1 zu = 1, (3-1). Simple algebraic manipulations complete the proof. a

Theorein 2. The complex number seIt. solves minllll=. G(r) if and only irit solves minllrlI=, F(r).

Proof. If the norm of r is fixed, then by Lemma 1, F(r) and 2G(r) differ by a constant only. o

Above all, we are interested in the case # = 1. Theorem 2 implies that if the scaling factor is

kn-own, then the leatst-squares problem associated with the penalty function d is equivalent to the
"inaxin ial-projection" problem associated with the penalty function 6.

Lemnia 3. Assume that s > 0 is a nonnegative scalvr. If z* E X solves the linear program (3-8)

associated with G(r), then it solves the linear program associated with G(sr). The optimal solutions

are reBated bj"

G(sr) = sG(r). (3- 13)

Proof: Since G(r, z) is a bilinear functional,

(6(Sr),z) = (,6(r),z) =

If s = 0, then the result is immediate. If s > 0, then the lemma readily follows because positive

scaling of the objective function of a linear program does not change its optimal solution set. o

8



Thioremn 4. Awiunw that z" E N is a vertex solution to

min min G(r,z) (3- 14)
llrllC, r(X

(or some positi-e a. Assume that *" is the permutation associated with z*, and |ct

II(- 10)

and

r =OJ; * U) (3- 17)Il10II1

Then {e(i, z') solves the problcnro;

(a) rain rainG(r,z),
llrll=I rfEX

and

(b) inin nin F(r,z), (3- 18)
ljrll- I ZEX

while r', z) ) solves the problein

(c) n•n inin F(r, r).
r x

Proof: We assume that there exists ct'o such that

C(',#" ) _S G(c), ' (3 - 19)

for all ei and jr. Con.equently, by Theorem 3.2,

F(e', ') < F(e", ,r) (3 - 20)

for all ci and r. But we know from Theorem 2.2 that

F(et'or") < F(e'i, wr), (3- 21)

for all ei. It follows from (3-20) and (3-21) that

F(ci", ir*) F(e", r') < F(e1 , 1) (3- 22)

for all eif and r. This establishes that {eIrx) solves the problem (b). Invoke the Theorem 3.2

(again) and from (3-22) obtain

G(elr, 1) < G(elo, r) (3-23)

9



for all 08 and 7, which etablishes that {oe",ij') solves the problem (a). Finally, for all nonnegative

,' > 0 we have

G(s" G(o ,) _< * i,) = G(=.o', *W) (3-24)

b, Le'mmia 33. Invoke Theorems 2.2 and 3.2 together and obtain

F(s'" w) _< F(sc1 ",") < F(selo, r). (3- 25)

Since s is arbitrary, we have completed the proof that {rW,z*) solves the problem (c) o

L.et lea-t-sqiiares registration problems be a generic name for the three problem, of (3-18). We

ha%( established a strong relation between the functioijals G(., .) and F(., .) The bilinear structure

of (;(, ) provides us with another special property of the optimal solution sets. After we establish

his lt-t nontriviai theorctical property, we can give the promised algorithhm. For a fixed C, define

lit,e corresponding complex plane equivalence relation by

r() 0r(3) if and only if
(3-26)

G(r~l),x") < (S(r 1 x) for all z E X N G(r(3), x) < G(r(Z3 ,r) for all x E A.

Throreni 5. Relation "-G " induces a convex conical subdivision of the complex plane.

Proof: Assumc, that (3-26) holds for some pair r"i and riai. Then by Lemma 3.3

G(srlt),x') = sG(r~ 1), x) < sG(rti),.x) = G(sr~'),X) (3-27)

for Adl s > 0, and

G(Ar t 1•, x") + G((l - A)rt 2),z) =

AG(rti), x') + (1 - A)G(r t(),z") _< AG(r('), z) + (I - A)(G(r(3),x) (3 - 28)

= G(Ar(t1 , X) + G((1 - A)r(2),.r),

for all0< A < 1. a

'Hiht subdivision induced by F" is, of course, identical to the one induced by G and consists of a finite

numb.nr of cells. Thus the subdivision is the union of closures of its "two-dimensional" cells. (If we

% i, w (C as a two-din'ensional real plane.) For each two-dimensional cell, (r, we arbitrarily choose a

relresenltatile x(t•) from the vertices of the associated solution set of mintEx G(r•, r), where ro is

any c6,'ment of c. Let i((v) be the permutation corresponding to x(a).

10



Proposition 6. The set of representatives contains at least one optimal matching associated with

the least-squares registration problems (3-18).

Proof: The result follows from the fact that the relation G(r, x) < G(r, z) for all r E a extends by

continuity to the boundary of o. a

Figure 3.1 exhibits a finite conical subdivision of the plane.

r
2

Figure 3.1 A conical subdivision of C and a piecewise-linear path closed around origin

Note, that any closed curve around the origin intersects all two-dimensional regions of the subdivi-

sion. In particular, this is true of all piecewise-linear curves around the origin.

11



4. The Algorithm

The algorithm to solve the least-squares registration problems (3-18) has four basic steps:

ALGORITHM

STEP 1: Choose a closed piecewise-linear curve in the plane (Y), which contains origin in its

intenor.

STEP 2: Choose a starting point r° E -f and solve the assignment problem associated with G(rP).

STEP 3: Parametrically compute the optimal solutions of the assignment problems associated with

G(ý (t)) and collect all distinct locally optimal permutations.

STEP 4: Use Theorem 2.2 to find the optimal rotation and scaling corresponding to each permu-

tation obtained in Step S. The best overall solution solves the registration problems (3-18).

Let us briefly remark on each individual step.

Step 1. The unit square of Figure 3.1 is a convenient choice for -. Note, that

6,b(1) = ,l oUj (4- 1)

and that

,,j(i) = aIX ×j, (4-2)

the "dot" and "cross" products of ai and U. respectively. If r = r, + ir 2, then

6,j(r) = r1 6,i(1) + r2 b5,i(i). (4 -3)

Consequently, the costs on the unit square of Figure 3.1 are easy to construct.

Step 2. It is convenient to choose a cornerpoint of the unit square as a starting point, for instance,

r' = 1 + i. The Hungarian method can be used to solve G(1 + i) in 0(k 3 ) worst-case "time".

Step 3. The parametric version of the simplex algorithm specialized to the transportation problem

can be used to perform this step. Since the vertices of X (3-1) are degenerate, few blocked pivots

may be performed between successive permutations. It is believed that the overall number of pivots

is quadratic in k, however, this question is still open.t

Consider the conical subdivision of R(k-1)2 generated by the nonnegativity constraints in the circu-
lations subspace, PAPADIMITRIOU and STEIGLITZ [10], KENNINGTON &d• HELGASON [9]. The complexity
of our algorithm directly depends on the number of cones intersected by a line through this conical
subdivision.

12



Step 4. In practice, Steps 3 and 4 are merged so that. not all relevant matchings need be stored

in memory. Note (Theorem 2.2) that for each permutation we mainly need to compute (A, i(B)),

(1-1). This requires O(k) arithmetic operations.
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Image registration involves estimating how one set of n-dimensional points is rotated, ccaled, and

translated into a second set of n-dimensional points. In praztice, n is usually 2 or 3. We give an exact

algorithm to solve the "least-squares" formulation of the two-dimensional registration problem. The

algorithm, which is based on parametric linear programming, can be viewed as a refinement of the

0(k 3 ) approximation method proposed by Zikan and Silberberg [13). The approach can be extended

to handle registration of images of different cardinalities.
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